
Employing Use-cases for Piecewise Evaluation of
Requirements and Claims

Matthijs Westera

Utrecht University, AI

Matthijs.Westera@phil.uu.nl

Jimmy Boschloo

Utrecht University, AI

Jimmy.Boschloo@phil.uu.nl

Jurriaan van Diggelen

TNO Human Factors*

jurriaan.vandiggelen@tno.nl

Laurens S. Koelewijn

University of Groningen, HMC

lskoel@ai.rug.nl

Mark A. Neerincx

TNO* / Delft University of Technology

mark.neerincx@tno.nl

Nanja J.J.M. Smets

TNO Human Factors*

nanja.smets@tno.nl

* TNO Human Factors, P.O. Box 23, 3769 ZG, Soesterberg, The Netherlands.

ABSTRACT
Motivation – Complex design specifications must be
partitioned in manageable pieces to be able to evaluate
them in separate experiments. No methodology existed
to deal with this task.

Research approach – Practical experience in Situated
Cognitive Engineering and the Mission Execution Crew
Assistant is combined with a theoretical perspective on
the relation between use-cases, requirements and claims.

Findings/design – Hierarchical clustering is an
effective method for partitioning a design specification.
Use-cases provide a good criterion based on which to
cluster the requirements and claims.

Originality/Value – A new method and tool are
presented for organising requirements and for
systematising the evaluation of a complex design
specification.

Take away message – Piecewise evaluation benefits
from a use-case-based partitioning of the design
specification combined with an experimental stance on
requirements and claims.

Keywords
Empirical requirements evaluation, Cognitive
Engineering, use-case-based decomposition,
requirements clustering, piecewise evaluation.

INTRODUCTION
Future manned missions to the Moon and Mars set high
demands for personalised support systems taking into
account the social, cognitive and affective states of the
astronauts. A common way to address the complexity
of developing such systems is to follow an iterative
human-centered design process (see for an overview
e.g. Norman, 1986; Rosson and Carroll, 2002). In this
way, the requirements, claims and use-cases in the
design specification are developed iteratively in
successive stages of empirical evaluation and
refinement.

Typically the design specification of complex cognitive
support systems is of such a size that it cannot be
evaluated as a whole in one experiment. Rather, the

design specification must be divided into manageable
pieces that can be evaluated in separate experiments.
Partitioning the design specification for piecewise
evaluation is a non-trivial task due to the many
interdependencies between requirements, claims and
use-cases. A systematic approach is required to ensure
that the quality of the design specification is sufficiently
assessed after its parts have been evaluated. The aim of
this paper is to present our proposed solution to this
problem.

The solution is based on two core ideas. First,
experiment design in Cognitive Engineering should be
driven by the formulation of hypotheses that target
pieces of the design specification from an experimental
stance (cf. Woods, 1998; Carroll and Rosson, 2003).
Second, a suitable partitioning of the design
specification for piecewise evaluation can be obtained
by applying appropriate use-case-based selection
criteria to the complete set of hypotheses.

To emphasise and illustrate the practical value of these
ideas, we apply them to the Situated Cognitive
Engineering approach in general and the Mission
Execution Crew Assistant (MECA) project in particular
(Neerincx and Lindenberg, 2008). MECA is an
electronic personal assistant aimed to empower the
cognitive capacities of human-machine teams during
planetary and lunar exploration missions. We present a
prototype tool to visualise the MECA design
specification and to select hypotheses adequate for
evaluation.

The paper is organised as follows. In the next section,
we introduce Situated Cognitive Engineering and
explain which pieces of a design specification may
represent testable hypotheses. In the third section, we
describe how requirements and claims can be clustered
based on the use-cases to which they apply, yielding a
use-case-based (as opposed to functional)
decomposition of the design specification. In the fourth
section, we explain why a use-case-based
decomposition is a useful method for the exploration
and selection of hypotheses for empirical evaluation.

ORGANISING THE DESIGN SPECIFICATION
Following trends in Cognitive Engineering (e.g.
Hollnagel and Woods, 1983; Norman, 1986;
Rasmussen, 1986), and requirements engineering, we
have applied our ideas to the Situated Cognitive
Engineering method, as employed in the Mission
Execution Crew Assistant project, formulated in
(Neerincx and Lindenberg, 2008). Situated Cognitive
Engineering centers on the notion that engineering and
evaluating complex systems like MECA relies on
situated rather than universal theories of cognition:
theories which are embedded in the context of design,
including operational demands, human factors
knowledge and envisioned technology.

Requirements, Claims and Core Functions
Figure 1 summarises the way the design specification is
organised. Based on operational demands, envisioned
technology and human factors knowledge, a design
specification is derived which is then iteratively
evaluated and refined. The design specification consists
of core functions and requirements that elaborate on
these core functions. In addition, claims are included to
justify features and design decisions, highlighting the
upsides, downsides and trade-offs involved (Carroll and
Rosson, 2003). A large set of use-cases contextualises
the requirements, indicating in what kinds of situations
a given requirement applies.

This approach differs from previous work on (Situated)
Cognitive Engineering in three ways. First, as the
dashed line in the figure indicates, the set of core
functions is treated as part of the requirements baseline,
rather than as a high-level division of functional

domains (as in for instance functional decomposition).
This ensures that dependencies between the different
core functions and between the requirements that
elaborate on them are not a-priori excluded.

Second, claims are included not only to justify the core
functions (as in Neerincx and Lindenberg, 2008), but
rather, in accordance with our stance on core functions
as requirements, they are included to justify any
individual requirement (and, optionally, sets of
requirements).

Third, although use-cases still serve to contextualise the
requirements (as in Carroll 2000), we show in the
remainder of this paper that use-cases are essential for
organising the requirements baseline and selecting
useful hypotheses for empirical requirements
evaluation.

Design Specification as a Collection of Hypotheses
In order to deal with the often troublesome connection
between individual design problems and an overarching
theory as well as to streamline the evaluation process, it
has been proposed to regard (parts of) the design
specification as a scientific hypothesis (Carroll and
Rosson 2003, Woods 1998):

“An experimental stance means that designers need to
recognise that design concepts represent hypotheses or
beliefs about the relationship between technology and
cognition/collaboration, [and] subject these beliefs to
empirical jeopardy by a search for disconfirming and
confirming evidence, […]. This experimental stance is
needed, not because designers should mimic traditional
research roles, but because it will make a difference in
developing useful systems […].” (Woods 1998, pp.170-
171)

Applied to Situated Cognitive Engineering (or
requirements engineering in general), we propose that a
design specification can be phrased as a hypothesis as
follows:

(1) Any system adhering to the requirements baseline is
optimised to help achieving the system’s goal.

Since claims, as justifications, are always formulated in
line with the overarching goal of the system, we can
make the hypothesis in (1) more concrete:

(2) The claims are an adequate justification of the
requirements baseline.

After all, if the claims are an adequate justification of
the requirements baseline (2), then a system adhering to
the requirements baseline will optimally help reach the
goal (1); if the claims are not an adequate justification
of the requirements baseline (2), then a system adhering
to that requirements baseline may not help reach the
goal (1). In this formulation the entire requirements
baseline is covered, but similarly any subset of
requirements with its corresponding claims may
function as a hypothesis. This is in line with Rosson and
Carroll’s suggestion to treat claims as hypotheses
(Rosson and Carroll 2008), but our formulation makes
the different roles of requirements and claims more

Requirements baseline

Justify
Contextualise
& Organise

Claims Core
functions

Evaluate

Derive

Operational demands,
envisioned technology,

human factors knowledge

Use-Cases

Refine

Figure 1. The basic organisation of the MECA
design specification. Claims justify requirements,
including the high-level core functions. Use-cases,
aside from providing context, serve to organise the
requirements baseline.

explicit. Below we explain how regarding (parts of) the
design specification as a hypothesis serves to streamline
the evaluation and refinement loop.

Truthfulness and Exclusiveness
What does it mean for a set of claims to be an
‘adequate’ justification of some part of the requirements
baseline? First, an adequate justification is truthful: all
information that the justification is based on must be
factual. Second, an adequate justification is exclusive: it
must explain why the current and not some other
requirements baseline is optimal. For a claim to be
truthful, the upsides, downsides and trade-offs contained
in it should occur as such in reality. If, for instance, a
claim includes the upside “increases efficiency by at
least 10%” whereas factually this is only 5%, the claim
must be revised. A revision need not always lead to the
requirement(s) becoming worthless. After all, a 5%
increase in efficiency is still good, provided that no
important downsides exist. However, if new facts cause
the downsides to dominate the upsides, the inclusion of
the requirement in the design specification is no longer
justified and the requirement needs to be modified or
removed.

For a claim to exclusively justify a requirement, it must
hold that the claim cannot apply to any other
requirement while maintaining its truthfulness. After all,
if alternative requirements exist that lead to the exact
same upsides and downsides and involve the same
trade-offs, choosing any one of them over the others
would be unjustifiable. If such a situation occurs, a
generalisation of the various alternatives should take its
place until further research reveals which of its
instantiations is the best candidate. The exclusiveness of
claims thus ensures that preliminary convergence in the
requirements baseline can be detected and blocked. A
consequence is that initial requirements are typically
general, as well as the claims that justify them.
Refinement can only iteratively proceed from general to
specific, carefully justifying at each step the refinement
made.

Although treating the refinement process in Situated
Cognitive Engineering in detail is beyond the scope of
this paper, a short remark is in place here because the
refinement of requirements can be (and should be)
coupled to evaluation (they both label the same arrow in
Figure 1, after all). To see this, consider that the
exclusivity of claims requires an experiment to always
compare various alternatives. Although in principle
such alternatives could be invented especially for such
an experiment, it is very hard for the researcher not to
be biased in favor of the current requirements. This bias
can be avoided by, instead of comparing the current
requirements to a set of alternatives, testing various
candidate refinements before the actual refinement takes
place to determine which of all possible refinements
would yield the best result. This method avoids the bias
because the current requirement is not being questioned
(although, of course, it was being questioned at an
earlier stage in the evaluation and refinement cycle).

The Mission Execution Crew Assistant
A first design specification for MECA was constructed
based on operational demands, human factors
knowledge and an envisioned technology. It was then
iteratively evaluated and refined using several methods.
The current MECA design specification consists of 167
requirements that elaborate on the 6 core functions
(viewed as high-level requirements themselves), a set of
claims that justify the inclusion of requirements in the
baseline and a collection of about 80 use-cases. The
core functions are health management, diagnosis,
prognosis and prediction, collaboration, resource
management, planning, and sense-making. Seven
criteria have been derived from human factors
knowledge and are referred to in the claims: to increase
effectiveness, efficiency and situation awareness, to
maintain appropriate trust levels, high learnability and
high satisfaction and to incorporate emotional
responses. Table 1 contains an example of a MECA
requirement with its claim (simplified) and use-cases.
As we mentioned, sets of multiple requirements rather
than single ones could likewise be accompanied by a
claim and use-cases, for instance to highlight
dependencies between the requirements.

Following the ideas discussed above, requirement
RF2024 with its claim C064, included in Table 1, could
be used together with other requirements and claims as
a hypothesis. The requirement is possibly too general to
be cast in any doubt: of course a personal assistant
should communicate with the crew about really
important events, for it is the only mean through which
they could possibly learn about such events. Its claim
with upsides and downsides is just as general, and rather
than as a rock-hard justification it should be seen as a
rough guideline regarding which aspects to pay
attention to when formulating refinements. Its possible
refinements, on the other hand, are numerous and not all

Requirement
RF2024

MECA shall communicate with the crew

about important events.

Claim C064 Each MECA unit will alert the crew

member regarding for instance scheduled

events, low-frequency nominal events

and off-nominal events.

+ Helps maintain high situation

awareness for crew members.

Consistent notifications help

maintain sufficient trust.

- May interrupt with current activities,

increasing cognitive task load, and

hence decreasing effectiveness or

efficiency.

Use-Cases UC077, UC078, UC080, UC083

Table 1. An example building block (simplified) of
the MECA design specification.

trivially valid or invalid. For instance, should MECA
communicate about important events verbally or
visually? Should MECA consider postponing certain
messages depending on the current cognitive task load?
When is an event to be classified as important enough
for interrupting the current task? A literature study
could narrow down the set of alternatives sufficiently
for them to be compared in an empirical evaluation
experiment.

USE-CASE-BASED DECOMPOSITION OF THE
REQUIREMENTS BASELINE
The design specification contains a large number of use-
cases. Use-cases in the MECA project have been crafted
along the lines of (Cockburn 2001). They make explicit
the various contexts of use, varying from simple
interactions with only one crew member to complex
sequences of events (often referred to as scenarios rather
than use-cases). Table 2 contains an example of a use-
case, containing descriptions of the goal and the actors,
a set of relevant requirements, and a step-by-step
description of the event.

Use-cases are central to engineering complex systems.
They allow multiple views and levels of detail, help
achieve abstraction and categorisation, are concrete and
flexible at the same time, promote work-orientation and
invoke reflection (Carroll 2000). In this section we
show that an important role for use-cases, not treated by
Carroll, is to organise the requirements baseline.

The Requirements Dendrogram
We propose that a key role for use-cases in cognitive
engineering is to organise the requirements baseline
through use-case-based decomposition. By indicating
for each requirement the use-cases to which it applies, a

measure of similarity between requirements can be
computed. The requirements can then be input to a
clustering algorithm, or in particular a hierarchical
clustering algorithm (Johnson 1967), to obtain a
hierarchy of clusters of similar requirements. These
clusterings range from a single large cluster containing
all requirements (low within-cluster similarity) down to
many small clusters containing only one requirement
each (high within-cluster similarity), as in Figure 2a.
Such a hierarchy of clusterings can be visualised as a
dendrogram, illustrated in Figure 2b.

Use-case-based decomposition is similar to the more
traditional way of organising a design specification
through functional decomposition (see for instance the
‘structured analysis’ method, described by for instance
DeMarco, 1979; Yourdon, 1989), but offers a number of
advantages over the latter.

First, the stativity and rigidity of a top-down functional
decomposition does not fit the fluidity of the design
situation – a problem that the usage-centered cognitive
engineering was meant to resolve in the first place. Use-
case-based decomposition, on the other hand, is
dynamic and flexible, with the hierarchy automatically
changing as requirements or use-cases are added or
removed. It should be mentioned here that the more
requirements and use-cases a design specification

Use-case
UC083

Alarm handling

Goal To bundle low-level alarms into
meaningful events.

Actors Astronaut in habitat, MECA of habitat.

 …

Requirements RF2024, RF2050, RF2080, RF2260,
RU3010, RU3011, RU3012, RU4040,
RU4120, RU4130, RU4140, RU4170,
RU4260, RF2230, RU4200.

Scenario 1. Low-level smoke and IR alarms are
activated.
2. MECA combines the low-level alarms to
determine the location and scope of the fire.
3. MECA gets the attention of the astronaut
4. MECA provides procedures to the
astronaut to fight the fire
5. Astronaut fights fire
6. Fire is put out.

Table 2. An example use-case of the MECA system.
Fields like preconditions, post-conditions and
comments have been omitted for brevity.

A

B

C

D

E
F

G

H

A B C D E H G F

 (b)

(a)

Figure 2. Eight requirements labeled A to H are
clustered at several levels of within-cluster
similarity. (a) Here, for illustrative purposes, the
similarity between requirements corresponds to
their distance. (b) The same hierarchical
clustering can be depicted in a dendrogram.

contains, the more stable the use-case-based
decomposition becomes.

Second, an advantage of use-case-based decomposition
over functional decomposition is that it closely reflects
the pragmatic experience of the user. The clusters will
contain those combinations of requirements and the
dependencies between them that are relevant for the
user and which will provide a useful hypothesis for
user-centered empirical evaluation.

Third, in the more traditional approach, a mismatch
between the designers’ envisioned decomposition and a
functional hierarchy, or a disagreement between
designers on the desired location of a requirement in the
hierarchy, will block creativity and discussion. By
employing use-case-based decomposition, on the other
hand, such a mismatch will instead highlight which use-
cases may be missing or inadequate. It will lead to a
fruitful re-evaluation of the use-cases.

A Requirements Dendrogram for the Mission
Execution Crew Assistant
We decomposed the MECA requirements baseline
based on approximately 80 use-cases. We employed the
conceptual clustering algorithm COBWEB (Fisher,
1987), as implemented in the WEKA workbench
(http://sourceforge.net/projects/weka/; Witten and
Frank, 2005), with the acuity parameter set to the
default value and cutoff set to 0.09. In a nutshell,
COBWEB constructs a hierarchy of clusterings by

maximising the over-all category-utility, a measure
based on conditional probabilities.

In our clustering runs so far, the requirements’
applicability to use-cases has always been a binary
attribute, to increase the efficiency of the manual use-
case annotation process. With applicability as a binary
attribute, we found that use-cases should be coupled to
requirements rather liberally for the resulting
dendrogram to be insightful and balanced. We suspect
that using a continuous attribute instead could further
improve the resulting clustering.

For the MECA project we have developed a prototype
tool to explore and select hypotheses for empirical
evaluation (Figure 3). Central to this tool is the
requirements dendrogram: the hierarchy of clusters
constructed bottom-up from the use-cases. The
HyperGraph toolkit is used to visualise the
requirements dendrogram (http://hypergraph.
sourceforge.net/). A hyperbolic (i.e. fish-eye) view is a
common tool for visualising large hierarchies, because
it provides an intuitive way to focus on parts of the
hierarchy while at the same time maintaining the
overview. Selecting a cluster in the tree will reveal on
the right the requirements contained in it and the use-
cases to which they apply.

The MECA design specification is organised according
to an OWL/RDF ontology (Breebaart et al. 2009),
accessible to all parties involved through a web-

Figure 3. A screenshot of the hypothesis exploration tool (prototype).

interface. The ontology defines concepts like ‘crew
member’ and ‘equipment’, as well as important meta-
concepts like ‘requirement’, ‘use-case’ and ‘claim’. We
regard the tool presented above as an extension,
coupling a knowledge base with a dynamic, use-case-
based visualisation of the requirements baseline.

SELECTING A HYPOTHESIS FOR EMPIRICAL
REQUIREMENTS EVALUATION
So far we have mainly described how a design
specification is best organised. Central are the ideas to
view sets of requirements, with the corresponding
justifying claims, as hypotheses, and to decompose the
requirements baseline based on use-cases. In the current
section we show how both ideas are combined in a
proposed methodology for selecting hypotheses with
high utility for empirical evaluation.

Criteria for a Useful Hypothesis
When is a design specification finished? Although an
empirical hypothesis can never be undisputedly proven
(because a counterexample may always be discovered),
hypotheses concerning parts of the design specification
can be made more plausible through experimentation.
Determining when some part of the design specification
is finished amounts to estimating the plausibility of the
corresponding hypothesis. There comes a point at which
to accept it as true and enter the implementation stage
(for pointers regarding this decision, see e.g. Zave and
Jackson, 1997).

Before that happens, it is useful to keep track of which
pieces of the design specification have been tested
together and whether the outcome confirmed the
hypothesis, in order to avoid testing an already quite
plausible hypothesis. With such bookkeeping, the
plausibility of a hypothesis can be computed
automatically. Looking again at the tool in Figure 3,
nodes in the hyperbolic tree, representing clusters or
hypotheses, are coloured red (not plausible yet) or green
(plausible), based on their estimated plausibility.

Testability and Empirical Value
Not only do hypotheses differ in their established
plausibility, they also differ in their testability (whether
the hypothesis is easy to test) and empirical value
(whether testing the hypothesis has any influence on the
plausibility of the design specification as a whole). A
requirements baseline can be decomposed into
exponentially many different chunks, each with a
corresponding hypothesis. Determining which of these
countless hypotheses are suitable for an evaluation
experiment is a difficult problem.

Two rules of thumb can help to optimise testability and
empirical value. First, the larger the number of
requirements in a hypothesis, the more closely it
resembles the design specification as a whole and hence
the higher its empirical value, but the lower its
testability. A hypothesis that concerns the entire
requirements baseline carries maximal empirical value,
but it is also the hardest to test – after all, one has to
implement or simulate the entire system.

Second, related requirements are often subject to
various interdependencies, the inclusion of which in a
hypothesis greatly increases its empirical value.
Relatedness also increases a hypothesis’ testability,
because related requirements apply in similar situations
and can be tested under similar experimental conditions.
This is especially the case when relatedness is estimated
based on the use-cases in which requirements occur,
rather than for instance on functional grounds.

Both rules of thumb are present already in the
dendrogram resulting from a use-case-based
decomposition of the requirements baseline (previous
section). The number of requirements is incorporated
roughly in the vertical dimension in the hierarchy, with
the sets higher up in the dendrogram containing more
requirements than the sets at the bottom. The
relatedness between requirements is responsible for
grouping some requirements together while keeping
others separated and is fundamental to the dendrogram.
A use-case-based decomposition of the requirements
baseline thus allows the designer to focus on parts of the
design specification that, as hypotheses, will optimise
empirical value and testability.

A Simple Procedure for Selecting Hypotheses
Given a requirements dendrogram, possibly
incorporated in a tool like the prototype presented
above, the methodology for selecting an optimal
hypothesis can be sketched as follows:

1. Select an underevaluated hypothesis (i.e. a red
cluster in the dendrogram in Figure 3).

2. If the hypothesis is very difficult to test given the
resources available (money, time, participants,
software), move down in the dendrogram to its sub-
hypotheses until an underevaluated hypothesis is
encountered that is testable.

3. If the hypothesis is very easy to test given the
resources available, consider moving up in the
dendrogram until a maximally challenging
hypothesis is encountered.

The testability of hypotheses higher up in the
dendrogram increases gradually as each of its sub-
hypotheses are made plausible, because only the
interaction of its sub-hypotheses remains to be
investigated. This enables the designer to gradually test
larger and larger parts of the requirements baseline
without introducing too many variables at once.

CONCLUSION
Partitioning a large design specification for piecewise
evaluation can be difficult due to the many
interdependencies between requirements, claims and
use-cases. In this paper, we have proposed a method to
improve systematicity of piecewise evaluation in
Situated Cognitive Engineering in two ways. First, each
set of requirements with a set of justifying claims is
regarded as a hypothesis concerning the adequacy of the
justification. Such hypotheses should be tested by
comparing different refinements of the requirements

baseline. Second, whether a hypothesis is worth testing
depends on the number of requirements, the relatedness
of its requirements (which can be estimated based on
use-cases), and its established plausibility. Applying the
method yields a use-case-based decomposition of the
design specification. We have developed a tool to
support the method.

We believe the proposed method is an asset for the
development of a wide range of cognitive systems, such
as naval ships design (Neerincx, et al., 2008), patient
self-care supervision (Blanson Henkemans, et al.,
2007), negotiation support (Hindriks and Jonker, 2008)
and Mars surface operations (Clancey, Lee and Sierhuis,
2001).

We have identified a number of interesting directions
for future work. We intend to investigate different ways
to annotate requirements for clustering (other than use-
case-based). We have gained some initial experience
with testability-based decomposition by annotating all
requirements with the experimental conditions under
which they could be evaluated (in a virtual or real
environment, with human participants or artificial
agents, with or without a measure for cognitive task
load, etc.). We believe that such criteria can provide a
valuable addition to our method. Another way to
improve the requirements clustering method could be to
enrich the annotations of use-cases and requirements by
referring to a dedicated ontology and use these
annotations as a basis for clustering. Natural language
processing methods such as Latent Semantic Analysis
could be employed to automate part of the annotation
process.

Another direction for future research is to compare
functional decomposition with use-case-based
decomposition. We have already explained that a use-
case-based decomposition approach better fits the
dynamicity of the design context, helps to refine use-
cases and reveals important interdependencies that
would otherwise have gone unnoticed. Another
important difference concerns the lack of cluster labels
in use-case-based decomposition, which are usually
defined from the start in functional decomposition. Two
questions could address this difference. First, would
meaningful cluster labels increase insight in the
hierarchy and, for instance, promote communication?
Second, if desired, could such labels be derived
automatically from the data? So far, automatically
labeling clusters based on the descriptions of use-cases
to which they apply has yielded promising results.

Finally, an important topic for future work is the link
between evaluation and refinement and the role of a
use-case-based decomposition therein. Use-case-based
decomposition results in a hierarchy that from top to
bottom roughly reflects the routes of refinement, leading
from general to increasingly specific requirements.
Clusters higher up in the hierarchy not only contain
more general requirements, in a way they can also be
identified with such high-level requirements. For that
reason we expect that the proposed method could be

useful for identifying areas that need refinement and
areas that have been prematurely refined.

ACKNOWLEDGEMENTS
MECA is a development funded by the European Space
Agency (contract numbers 19149/05/NL/JA and
21947/08/NL/ST). Project partners are TNO Human
Factors (NL), Science & Technology BV (NL), OK-
Systems (E) and EADS-Astrium (D). Website can be
found at http://www.crewassistant.com.

REFERENCES
Blanson Henkemans, O.A., Bonacina, S., Cappiello, N.,

Van der Mast, C., Neerincx, M.A., Pinciroli, F.
(2007). A hybrid multi-agent system architecture
for distributed supervision of chronic patients in
the e-health setting. In Euromedia 2007, pp. 119-
124, Eurosis-ETI, Ghent.

Breebaart, L., Bos, A., Grant, T., Olmedo Soler, A.,
Neerincx, M.A., Smets, N.J.J.M., et al. (2009).
The MECA Project - Ontology-Based Data
Portability for Space Missions, in Space Mission
Challenges for Information Technology, pp. 193-
200.

Carroll, J.M. (2000). Five reasons for scenario-based
design. Interacting with Computers 13.1: pp. 43-
60. Elsevier Science B.V.

Carroll, J.M., Rosson, M.B. (2003). Design Rationale as
Theory. In Carroll, J.M. (ed.), HCI Models,
Theories and Frameworks, pp. 431-461, Elsevier
Science, San Fransisco.

Clancey, W. J., Lee, P., Sierhuis, M. (2001). Empirical
Requirements Analysis for Mars Surface
Operations Using the Flashline Mars Arctic
Research Station, in Proceedings of the Fourteenth
International FLAIRS Conference, AAAI Press,
pp. 24-26.

Cockburn, A. (2001). Writing Effective Use Cases.
Addison-Wesley.

DeMarco, T. (1979). Structured Analysis and System
Specification. Prentice Hall.

Fisher, D.H. (1987). Knowledge acquisition via
incremental conceptual clustering. Machine
Learning 2: pp.139–172.

Hindriks, K.V., Jonker, C.M., Creating Human-Machine
Synergy in Negotiation Support Systems: Towards
the Pocket Negotiator (2008). In W.-P. Brinkman
(ed.), Proc. of the 1st Int. Working Conference on
Human Factors and Computational Models in
Negotiation, pp. 47-54, ACM, New York.

Hollnagel, E., and Woods, D.D. (1983). Cognitive
systems engineering: New wine in new bottles.
International Journal of Man-Machine Studies, 18,
583-600.

Johnson, S.C. (1967). Hierarchical Clustering Schemes.
Psychometrika 2, pp. 241-254.

Kelley, J.F. (1983). An empirical methodology for
writing user-friendly natural language computer
applications. In Proceedings of the SIGCHI
conference on Human Factors in Computing
Systems, pp.193-196, Boston, Ma.

Lamping, J., Rao, R., and Pirolli, P. (1995). A
focus+context technique based on hyperbolic
geometry for visualising large hierarchies. In
Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pp.401-408,
Colorado, United States.

Neerincx, M.A. (2008). The Mission Execution Crew
Assistant: Improving Human-Machine Team
Resilience for Long Duration Missions. IAC2008.

Neerincx, M.A. & Lindenberg, J. (2008). Situated
cognitive engineering for complex task
environments. In: Schraagen, J.M.C., Militello, L.,
Ormerod, T., & Lipshitz, R. (eds.), Naturalistic
Decision Making and Macrocognition, pp. 373-
390. Aldershot, UK: Ashgate Publishing Limited.

Neerincx, M.A., Te Brake, G.M., Van de Ven, J.G.M.,
Arciszewski, H.F.R., De Greef, T.E., and
Lindenberg, J. (2008). Situated cognitive
engineering: Developing adaptive track handling
support for naval command and control centers. In
B. Patrick, C. Gilles and L. Philippe (eds.), Third
Internation Conference on Human-Centered
Processes, pp. 3-20. TELECOM Bretagne, France.

Norman, D.A. (1986). Cognitive Engineering. In D.A.
Norman, and S.W. Draper (eds.), User-Centered
System Design: New perspectives on human-
computer interaction, pp. 31-62. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Rauterberg, M., Neerincx, M.A., Tuyls, K., Loon, J. van
(2008). Entertainment computing in the orbit. In:

Ciancarini, P., Nakatsu, R., Rauterberg, M.,
Roccetti, M. (Eds.). IFIP International Federation
for Information Processing 279:pp. 59–70.
Boston: Springer.

Rasmussen, J. (1986). Information processing and
human-machine interaction: an approach to
cognitive engineering. Amsterdam, Elsevier.

Rosson, M. B., Carroll, J. M., 2002. Usability
Engineering, scenario-based development of
human-computer interaction. Academic Press, San
Diego.

Rosson, M. B., Carroll, J. M., 2008. Scenario-based
Design. In Sears, A., Jack, J. A. (eds.), The Human
Computer Interaction Handbook, pp. 1041-1060,
Taylor & Francis Group, New York.

Smets, N.J.J.M., Abbing, M.S., Neerincx, M.A.,
Lindenberg, J, and Oostendorp, H. van (2008).
Gamebased evaluation of personalized support for
astronauts in long duration missions. Acta
Astronautica 66 (5-6), pp. 810-820.

Witten, I.A., Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques, 2nd
Edition. Morgan Kaufmann, San Francisco.

Woods, David D. (1998), Designs are Hypotheses about
How Artifacts Shape Cognition and Collaboration.
Ergonomics, 41, 168—173.

Yourdon, E. (1989). Modern Structured Analysis,
Yourdon Press Computing Series.

Zave, P., and Jackson, M. (1997). Four Dark Corners of
Requirements Engineering. ACM Transactions on
Software Engineering and Methodology, Vol. 6,
No. 1, pp.1-30.

